Cori Application
Readiness Strategy
and Early

EXxperiences

March, 2016

&5 U.S.D R OF +
{ e,‘i EPARTMENT Office of

ENERGY Science

What is different about Cori?

YEARS

ttttt

Edison (lvy-Bridge):

12 Cores Per CPU
24 Virtual Cores Per CPU

2.4-3.2 GHz

Can do 4 Double Precision
Operations per Cycle (+ multiply/add)

2.5 GB of Memory Per Core

~100 GB/s Memory Bandwidth

Office of

£ U.S. DEPARTMENT OF

57 it \E

@ ENERGY

o\ y/ :
Science

Cori (Knights-Landing):

Up to 72 Physical Cores Per CPU
Up to 288 Virtual Cores Per CPU

Much slower GHz

Can do 8 Double Precision
Operations per Cycle (+ multiply/add)

< 0.3 GB of Fast Memory Per Core
< 2 GB of Slow Memory Per Core

Fast memory has ~ 5x DDR4
bandwidth

\
A
rrrrrrr ""I

BERKELEY LAB

NESAP

The NERSC Exascale Science Application Program

>

'YEARS
e i at the

~

U.S. DEPARTMENT OF] A
Office of cocerer]|l

ENERGY Jeeo)

Code Coverage T e

OREFRONT

Breakdown of Application Hours
on Hopper and Edison 2013

" NESAP Tier-1, 2 Code
- NESAP Proxy Code or Tier-3 Code

VASP

elasticDriver3d

S3D
WRF
qlua

osiris

U.S. DEPARTMENT O

ENERG BerkeleyGW

BerkeleyGW

Resources for Code Teams NERsc/| g Ete

* Early access to hardware
— Access to Babbage (KNC cluster) and early “white box” test systems expected in 2015
— Early access and significant time on the full Cori system

* Technical deep dives

— Access to Cray and Intel staff on-site staff for application optimization and performance
analysis

— Multi-day deep dive (‘dungeon’ session) with Intel staff at Oregon Campus to examine
specific optimization issues

* User Training Sessions

— From NERSC, Cray and Intel staff on OpenMP, vectorization, application profiling
— Knights Landing architectural briefings from Intel

e NERSC Staff as Code Team Liaisons (Hands on assistance)
e 8 Postdocs

Officeof ‘.ﬁ|

£ U.S. DEPARTMENT OF

7 A

£l)&l .
ENERG I Science

BERKELEY LAB

NESAP Postdocs RE 0@@58

FOREFRONT

Target Application Team

Concept
(1 FTE Postdoc +)
' 0.2 FTE AR Staff
Taylor Barnes Brian Friesen Andrey Ovsyannikov 0.25 FTE 1.0 FTE
Quantum ESPRESSO Boxlib Chombo-Crunch COE User Dev.

1 Dungeon Ses. +
2 Week on site w/
Chip vendor staff

B '.'e-..
Mathieu Lobet Tuomas Koskela Tareq Malas
WARP XGC1 EMGeo

U.S. DEPARTMENT OF Oﬂ-‘lce of

ENERGY Science

Helen He

Katie Antypas Nick Wright Richard Gerber Brian Austin Zhengji Zhao

Doug Doerfler

Jack Deslippe Brandon Cook Thorsten Kurth

Woo-Sun Yang Rebecca Hartman-Baker

U.S. DEPARTMENT OF Oﬂ-‘lce Of

ENERGY Science

Ankit Bhagatwala Stephen Leak

Target Application Team
Concept

(1 FTE Postdoc +)
0.2 FTE AR Staff

0.25 FTE COE 1.0 FTE
User Dev.

1 Dungeon Ses. +
2 Week on site w/
Chip vendor staff

~

A
reecoee] !

Timeline nensc (RN

Jan May Jan Jan Jan
2014 2014 2015 2016 2017

e U.S. DEPARTMENT OF ‘ Office of i NERSC User and 3rd Party Developer Conferences i

ENERGY

Science

Timeline nensc (RN

Jan May Jan Jan Jan
2014 2014 2015 2016 2017

e U.S. DEPARTMENT OF ‘ Office of i NERSC User arjll3rd Party Developer Conferences i

ENERGY

Science

Working With Vendors

NERSC Is uniquely
positioned between Dungeon Session Speedups (From Session
HPC Vendors and HPC :s and Immediate Followup)

Users and Applications
developers.

NESAP provides a
power venue for these
two groups to interact.

Optimization Strategy

'YEARS
e i at the

~

U.S. DEPARTMENT OF] A
’ Office of cocerer]|l

ENERGY Jeeo)

Important Optimization Concepts S e

FOREFRONT

e MPI+X (Where X is MPI, OpenMP, PGAS etc)
e Vectorization

¢ Understanding Memory Bandwidth

Office of

£292s U.S. DEPARTMENT OF

L o

2y ' i

e I=iVE=lNSY 0 | OCiENnce

OpenMP large cache
scales only to miss rate Code shows no
4 Threads improvements
\ Communication when turning on 50% Walltime
:831:‘2?;5 beyond vectorization \ is 10

The Ant Farm!

llIAVMlWlIAVXIIMIAVMMVIIAVMIWIIAVXIIMIAVXIMVIIAVM MRV

Memory bandwidth |0 bottlenecks
bound kernel

Compute intensive
doesn’t vectorize

MPI/OpenMP
Scaling Issue

Use Edison to
Test/Add OpenMP
Improve Scalability.

Help from
NERSC/Cray COE
Available.
Utilize
performant /
portable
libraries

Can you
use a
library?

Increase
Memory
Locality

Create micro-kernels or
examples to examine
thread level
performance,
vectorization, cache use,
locality.

Iy
Wi

i

Utilize High-Level
|O-Libraries. Consult
with NERSC about
use of Burst Buffer.

The Dungeon:
Simulate kernels on KNL.
Plan use of on package
memory, vector
instructions.

The Ant Farm Flow Chart

Yes

Are you memory or compute bound? Or both? NGRS/

FOREFRONT

s

AU

N
RUT) E“xample If you run on only half of the cores on a node, each core you do run
in “Half has access to more bandwidth
Packed” Mode
4
srtun-N2-n24-c2-S6... VS srun-N1-n24-c1 ...

If your performance changes, you are at least partially memory bandwidth bound

h', .S. DEPARTMENT OF Office Of
4 (A

ERGY Science

>
A
rrrrrrr ""I

BERKELEY LAB

Are you memory or compute bound? Or both? = 0’5&53

FOREFRONT

4)
RUT) E“xample If you run on only half of the cores on a node, each core you do run
In I;Ialf has access to more bandwidth
. Packed” Mode)
Quantum ESPRESSO Packed Vs. Unpacked Performance
srun -n 24 -N 200 2 ...
700
600
% 500
£
= 400
If your performan¢ = . ound
200
100
0
_ Packed Unpacked
2 1:"5: U.S. DEPARTMENT OF Oﬂ-’lce Of
I'% ENERGY Science

Measuring Your Memory Bandwidth Usage (VTune EoRs

FOREFRONT

@) rppiications Places System @

=]
s &= D4 @ | welcome
6 Bandwidth Band

Thu Oct 2,

Intel VTune Amplifier XE 2015

B Cc nlog| &

42 oo

or Ruler Area
easure memory g e
]
:_'j: package_0 Bandwidth, GB/s.
. . 2 duk Bandwidt
andwidth usage in
§ - dud Read Band...
& ‘Write Bandwidt...
VTune. (Next Talk ' et
] £ |package 0 QPI Bandwidth, ...
3 CPU Tii
2 aL.021 e
5 |package_1 ik CPU Time
o
H
B |
=
: w I
£ |package 0
‘; i i i i i P
i [E
2 6 =
= |package_1
B/s -
. £ L
£
b
2 3
]
2
5
a
o g B
o O stream, you ¢
I CPU Time ‘
. jarm IBES
are I I Iel I |Ory bal IdWIdtI I Grouping: | Function / Call Stack [% |
Function / Call Stack CP.w¥ Instructions Retired CPI Rate Module Function (Full) Sou... Sta.
bo u n d PMAIN_ somp$parallel_for@400 87.1% 57,796,086,694 2.502 ffkernel.new2.x MAIN__$omp§parallel_fo... flke... Ox4
- P__kmp_wait_sieep_template 5.6% 7.248,010,872 1.187 libiomps.so __kmp_wait_sleep_temp... kmp.. 0x4 =
PMAIN_sompsparallel_for@549 2.5% 2,754,004,131 1.476 ffkernel.new2.x MAIN__sompgparallel fo... ffke... 0x4 ..
P [Outside any known module] 2.3% 556,000,634 6.737 [Outside any known mo... 0
P__kmp_x86_pause 1.2% 3,362,005,043 0.616 libiomps.so __kmp_xB6_pause 0x9
PMAIN_sompsparaliel_for@324 0.5% 1,050,001,575 0.724 frkernel.new2.x MAIN__Somp$parallel_fo... ffke... Ox4
D fikernel 0.3% 196,000,294 2.480 ffkernel.new2.x fkernel fke... Oxd ..
b_kmp_yield 0.2% 1,490,002,235 0.259 libiomp5.so __kmp_yield z_Li.. 0x9..
y DMAIN_sompsparallel_for@251 0.1% 252,000,378 0.770 ffkernel.new2.x MAIN__Sompgparallel_fo .. fike .. Oxd
P_ sched yield 0.0% 90,000,135 0.267 libc-2.12.50 _ sched _yield 0x3
PMAIN_sompsparallel_for@460 0.0% 18,000,027 1.000 ffkernel.new2.x MAIN__sompgparallel fo... fike... 0xd ..
‘to be d O n e P __svmi_log4_e9 0.0% 8,000,012 0.750 ffkernel.new2.x __svml_log4_e9 Ox4 ..
L] b func@oxbcao 0.0% 0 0.000 libittnotify_collector.so func@0xbc80 0xb
T Selected 1 row(s): | 87.1% 57,796,086,694 2802 T e T
ar 1]« TR

Any Process Functions only

| B mic@localhost:~/BGW.. ||

[mic] || & wotes (~) - gedit | [<no current project> .. || [l [<no current project= .. | & <no current project= -... &l -

=

U.S. DEPARTMENT OF 1 A
Office of - ...|

E N E RGY Science BERKELEY LAB

rcs Brkaey Nstana Lasratory

Are you memory or compute bound? Or both? NGRS/

FOREFRONT

I)
R’:url-ll Eh)‘(aCrlnpll?” Reducing the CPU speed slows down computation, but doesn't
eIl e reduce memory bandwidth available.
Speed
AU)
srun --cpu-freq=2400000 ... VS srun --cpu-freq=1900000 ...

If your performance changes, you are at least partially compute bound

Office of

AR, U.S. DEPARTMENT OF
2 i
I Science

\
A
rrrrrrr ""I

BERKELEY LAB

So, you are Memory Bandwidth Bound? bl || ears

FOREFRONT

W | I at to d O [] Edison Node Roofile Based on Stream of 89GB/s and Peak Flops of 460 GFlop/Sec

|) | "Roofline —
Unbalanced Ceiling —
Lhbalanced b SIMD Ceiling —— |

—y
o
o
o
|

Attainable GFlops/Sec
l‘ [| [|
Y

1. Try to improve memory locality,
cache reuse

100

10k u .]

Operational Intensity (Flops/Byte)

2. ldentify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

~
% U.S. DEPARTMENT OF 1 A
Officeof ‘m|

ENERGY Science Wf}i\‘“}g

i

(L0 IVeARs

So, you are Compute Bound? e - L i

What to do?

1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major
OpenMP regions.

0.455

£ >
= 0.365 f
" B 5
é; 278 E
[
0.18= o
5
0.0% E -
03 80 96 112 128 144 160 176 192 208 224 240 256 21T

o T E—

&
Simultanséously Utlizéd Logical CPUS

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPIl) and VPU utilization
in vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

R U.S. DEPARTMENT OF Office Of

© ENERGY T2 el

YEARS

at the
FOREFRONT

Things that prevent vectorization in your code

Original Optimized Example From Cray COE Work on XGC1

real (8),dimension real (8),dimension
(5, (col £ nvr-1)*(col f nvz-1) Lyeal & mynrl)y oy (ool £ avenlly
¥ — = — d fcol £ nve=1)*{col f nvz=1})) :i: Ms
{eol £ nve=1)*(col E nwve-1}) %% Ms - -
do index ip = 1, mesh Nzml
do index ip = 1, mesh Nzml do index jp = 1, mesh_ Nrml
do index jp = 1, mesh Nrml index 2dp = index jptmesh Nrml* (index ip-1)
. = . = . . tmp_vol = csZ2%local center volume(index jp)
o 4 * - e — _
index Zdp index jptmesh Nrml*(index ip-1) tmp £ hale v = £ half(index 5p; indew ip) *
tmp vol
tmp vol = csZ%local center volume(index jp) tmp dfdr v = dfdr(index jp, index ip) * tmp vol
tmp £ half v = £ half(index jp, index ip) * tmp_dfdz_v = dfdz(index_jp, index_ip) * tmp_vol
tmp vol
tmp dfdr v = dfdr(index jp, index ip)} * tm r (index] = tmpr(index jp,1) +
- — — — index ijp, lndex _ip,index ZD)*
tmp_vol . _ _ . tmp £ haI% '
tmp dfdz v = dfdz(index jp, index ip) * tmpr{lndex] = tmpr (index]p,2} +
tmp vol Ms (index jp, 1n ex ip,index ZD)*
- tmp £ half v
tmpr{lndex jp,3} = tmpr{index]p,S) +
tmpr(l:3)= tmpr(l:3)+ Ms (index %p, ,index ip,index ZD)*
Ms(l:3,index Z2dp,index 2D)* tmp f half v tmp_f hal
trpr(5) = tmpr(5) + tmpr{lndex jp,5) = tmpr(index jp,5) +
Ms (4, index 2dp, index 2D)*tmp dfdr v + . Molindew J9d,index ip,indox ZDi o dde ¥

U.S. DEPARTMENT OF Ofﬁce Of rj>| lh
ENERGY Science LAB

Things that prevent vectorization in your code 0’5&5‘5

FOREFRONT

Original Optimized Example From Cray COE Work on XGC1

FTETEIOT re e S Lo
T \
. [{col f nve=1),;5; (col £ nvzigzz::::>
(3, (col_£_nve-1)* (col_f nvzs Tt 1 bkt T T ~40% speed up
}] =i Ms o o

|vr~1}*{col_ —

rea

do index ip = 1, mesh Nzml fOI' kern9|

do index ip = 1, mesh Nzml do index jp = 1, mesh Nrml
do index jp = 1, mesh Nrml index 2dp = index jptmesh Nrml* (index ip-1)
. = . = . . tmp_vol = csZ2%local center volume(index jp)
o 4 * - = — _
index Zdp index jptmesh Nrml*(index ip-1) tmp £ hale v = £ half(index 5p; indew ip) *
tmp vol
tmp vol = csZ%local center volume(index jp) tmp dfdr v = dfdr(index jp, index ip) * tmp vol
tmp f half v = £ half(index jp, index ip) * tmp_dfdz e index ip) * tmp_vol
tmp vol

tmp dfdr v = dfdr(index jp, index ip) * Apr (index = tmpr (index jp,1

= = = = s (index jp lﬂdEX _ip,index ZD)*
tmp_vol tmp f haI% '
tmp dfdz v = dfdz(index jp, index ip) * tmpr{lndex i = tmpr(index jp,2) +
tmp_ vol Ms (index jp, 1n ex ip,index ZD)*

tmp £ half v

tmpr{lndex jp,3} = tmpr{index]p,S)
tmpr(l:3)= tmpr(l:3)+ (s (index %p, ,index ip,index ZD)*
s(l:3,index 2dp,index 2D)* tmp f half f hal
tmpr o) ool
Ms (4,index 2dp,index 2D)*tmp dfdr v + Ms (index_3ip; tmp_dfdr_v

r r
1 Me {4 mAavy™ [m 2 1r'\.~'h:sv A A nasT 2T * Fravr AFAT 1

U.S. DEPARTMENT OF Oﬂ-‘lce Of rj>| |ﬁ
ENERGY Science LAB

NESAP Case Studies woreon thursaay

'YEARS
e i at the

~

U.S. DEPARTMENT OF] A
Office of crecoes ‘m|

ENERGY Jeeo)

WARP/PICSAR

e Current deposition (particle-to-grid) and Field gather (grid-to-particle)
most time consuming subroutines

e Large time spent in memory accesses

e Low vectorization

NESAP Lead Ankit Bhagatwala, Mathieu Lobet

a -
Depasit : f ¥ _PI CPU MEM ACC CPU FLOAT POINT CPU FLP VECTCE

Current Field Particle Memory Floating Floating
deposition gather push access Point point
ops ops

(scalar) (vector)

Optimization 1: Tiling (Sep 2015)

= [mprove memory locality by tiling particle and grid quantities

Former data layout in PICSAR Tiled layout
|

+ Particles randomly distributed on the global » Particles grouped in tiles small enough
process grid that local particle/grid arrays fit in cache
* Poor cache reuse » Particles deposit charge/current on local grid

array in cache
» Reduction of local charge/current arrays in
global array
&% U.S. DEPARTMENT OF Office of » Slight extra overhead of reduction

ENERGY Science

Performance improvement from tiling Néasc

o
]
o
| Lower is better
o
-]
.
o Mo tiling | %
Tile size >> L2 Tile fits in L2
* Problem size: 80x80x80 cells
« ~10 particles per cell
oo o ceoarmmentor | | Office of

ENERGY science

Optimization 2: Vectorized current deposition

L3
g
7
O !
; ~ mesh = mesh + particle_value
b Current deposition
i N 25+ ?
* Vectorize over particles 20
, —> ri r
* Non-contiguous memory accesses over . er is bette

neighboring grld pOintS B Time(us/gp/ts)
* Vectorize over 8 neighboring grid points .

* 8x Memory overhead but substantial speedup

Particle loop Grid point loop

ST .
;z-"‘ N U.S. DEPARTMENT OF Offlce Of

ENERGY Science

I] =
m‘] A YEARS
V AS P SEi==

NESAP Lead Zhengji Zhao

VASP MPI/OpenMP Scaling

= +—total
300 p—— — E-eddiag
B .] eddrmm
——F
250 “—fftwwav_mpi
E 200 - Fﬂl—'.*:-:‘[_r’“l‘lpi
nE.- lincom
E 150 _ " orthl
100 rpromu
s - = raccdmu
= o - = o H - —4 pdssyex_zrheewx
0 = e rPL_alltoall
lexl Bxd 4% 2x8

MPI Tasks x OpenMP Threads

S

> U.S. DEPARTMENT OF Ofﬂce Of

&Y ENERGY science "29- BERKELEY LAB

= A
freccer |'“|

YEARS
FORa’ItE It:rl‘?eo NT

VASP profiling- memory bandwidth boudn? = T

BW bound test

CPU bound test

&0 - full 80 W 1.9 GHz
L 70 —
&0 - = half 60 W25 GH:z
= 50 - - -L"- 50
2 40 -) £ 40
— 30 = 30
— I l B
10)
10
ﬂ - T D i 1 1
& <& & & & & & &5 &
= £ 5# - -
..-' tj"_\.-.-" qﬁ‘g &) tq{[:‘ o 'E‘,P. N {t"cr -a[_j-
@f & #,14.# « « o

U.S. DEPARTMENT OF Office of

ENERGY Science

BERKELEY LAB

Estimating the performance impact of HBW memory to ml —
VASP code using AutoHBW tool on Edison '

Estimating HBM Impact to VASP Code Performance on Edison
= VASP5.3.5
700
600 -
— 500 -
o
@
-.E 400
=
=
o=
300 -
200 -
100 -
O =
All DDR 1M:5M All HEM
Array sizes on the HBM

Edison, a Cray XC30, with dual-socket lvy Bridge nodes interconnected with Cray’s Aries network, the bandwidths of the near socket
memory (simulating MCDRAM) and the far socket memory via QPI (simulating DDR) differ by 33%

E U.S. DEPARTMENT OF Ofﬁce of

J ENERGY ' Science -31-

BERKELEY LAB

VASP+FASTMEM performance on Edison 20

Estimating HEM Impact to VASP Code Performance on Edison

170
165 - | | | VASP Developiment Version 2
| | FASTMEM directives added
160
I
& 155
F=
5 150
&=
145
140
All DOV Mixed All HBM

DDR and HEM Usage

VASP performance comparison between runs when everything was allocated in the DDR memory (blue/slow), when only a few
selected arrays were allocated to HBM (red/mixed), and when everything was allocated to HBM (green/fast). The test case
PdO@Pd-slab was used, and the tests were run on a single Edison node.

U.S. DEPARTMENT OF Office of

ENERGY Science -32-

BerkeleyGW

* Spent a lot of time threading and vectorizing app. Performance still slightly worse
on KNC than Haswell

 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC, but not on Haswell)
do my_igp =1, ngpown (OpenMP)
doiw=1, 3
doig =1, igmax
load wtilde_array(ig,my_igp)
load agsntemp(ig,n1)
load |_eps_array(ig,my_igp)
do work (including complex divide) depends on ig, iw ...

<
&S U.S. DEPARTMENT OF i A
7 A Officeof ‘m|

WENERGY science j\‘

BerkeleyGW: Why KNC worse than Haswell for GPP Kernel?

e 2S Haswell 27.9s KNC 39.9s

do my_igp =1, ngpown (OpenMP)
doiw=1,3
doig =1, igmax
load wtilde_array(ig,my_igp)
load agsntemp(ig,n1)
load |_eps_array(ig,my_igp)
do work (including divide)

5,‘-}"“'4—’-3;_\,‘; U.S. DEPARTMENT OF Oﬁ-‘lce Of

& ENERGY science

(Bandwidth bound on KNC but not on Haswell)

Required Cache size to reuse 3 times:
1536 KB

L2 on KNC is 256 KB per Hardware Thread
' L2 on Has. is 256 KB per core |

\
A
rrrrrrr ""I

BERKELEY LAB

BerkeleyGW: Why KNC worse than Haswell for GPP Kernel?

N €

-

e 2S Haswell 27.9s KNC 39.9s

do my_igp =1, ngpown (OpenMP)
doiw=1,3
doig =1, igmax
load wtilde_array(ig,my_igp)
load agsntemp(ig,n1)
load |_eps_array(ig,my_igp)
do work (including divide)

“_;.ﬁ“i’—'-;ﬁ:“__ U.S. DEPARTMENT OF Oﬁ-‘lce of

i VENERGY science

(Bandwidth bound on KNC but not on Haswell)

Required Cache size to reuse 3 times:
1536 KB

L2 on KNC is 256 KB per Hardware Thread
' L2 on Has. is 256 KB per core |

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us. =y

BERKELEY LAB

W |

-

BerkeleyGW: Why KNC worse than Haswell for GPP Kernel?

e 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

igblk = 2048
do my_igp =1, ngpown (OpenMP)

doigbeg = 1, igmax, ighlk Required Cache size to reuse 3 times:
doiw=1,3
do ig = igheg, min(igbeg + igblk,igmax) 1536 KB

load wtilde_array(ig,my_igp) L2 on KNC is 256 KB per Hardware Thread

load agsntempl(ig,n1) L2 on Has. is 256 KB per core

load |_eps_array(ig,my_igp)
do work (including divide)

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
@, U.S DEPARTMENT OF | (Office of catch us. S ﬂ

) ENERGY sconee <l

gppkernel speedups

lgblk=2048 - to enable reuse of L2 cache on KNC

* Morning: 2S5 Haswell 27.9s KNC 39.9s
e Afternoon: 2S Haswell 27.5s KNC 29.7s

The loss of L3 on MIC makes locality more important.

Office of

£ U.S. DEPARTMENT OF

57 it \E

Y@ ENERGY

2 i
Science

Conclusions

'YEARS
e i at the

~

% U.S. DEPARTMENT OF] A
’ Office of cocerer]|l

ENERGY Jeeo)

High Level Lessons

1. Optimizing code for Cori is not always straightforward. It is a continual
discovery process that involves many sequential and coupled changes.

2
% U.S. DEPARTMENT OF 1 A
D Officeof ‘m|

: ENERGY science E;;F;m-?

High Level Lessons

1. Optimizing code for Cori is not always straightforward. It is a continual
discovery process that involves many sequential and coupled changes.

2. Use profiling tools like VTune and CrayPat on Edison to find and characterize
hotspots.

3. Understanding bandwidth and compute limitations of hotspots are key to
deciding how to improve code.

4. NERSC s in a unique position to facilitate the transition of DOE science codes,
with application teams and vendors.

Office of

”_«,«-*"""—'.;e,\@_ U.S. DEPARTMENT OF
I Science

